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Abstract A vertical perspective, ranging from management
and routing to physical layer options, concerning dynamic
network monitoring and compensation of impairments
(M&C), is given. Feasibility, reliability, and performance
improvements on reconfigurable transparent networks are
expected to arise from the consolidated assessment of net-
work management and control specifications, as a more accu-
rate evaluation of available M&C techniques. In the network
layer, physical parameters aware algorithms are foreseen to
pursue reliable network performance. In the physical layer,
some new M&C methods were developed and rating of the

state-of-the-art reported in literature is given. Optical moni-
toring implementation and viability is discussed.
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1 Introduction

Reliability in dynamic, wavelength division multiplexed
(WDM), photonic communication networks is becoming an
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increasingly significant research topic. The combination of
the ever-increasing demand for capacity, the generalization
towards meshed network topologies, and widespread avail-
ability of dynamic optical switching, leads to severe con-
straints on quality of service (QoS) provisioning. These result
from the difficulty in maintaining a uniform and acceptable
quality for any optical path across a transparent optical net-
work comprising multiple fiber types, signal formats and
data rates [1]. Furthermore, the quality of each optical path
is often correlated with that of other optical paths due to
optical impairments such as crosstalk, limited amplifier out-
put power, or transients in optical amplifiers, among others.
In this scenario, newly emerging unforeseen demands often
cannot be satisfied without modifying the network design,
which is costly and time consuming.

A solution for the interoperability issues among network
layers based on the introduction of dynamic M&C capabil-
ities must cope with the escalating complexity inherent to
the deployment of more reliable transparent networks. The
need to achieve higher performance levels and to enhance
the network reconfiguration capability & autonomy is also
spreading from core to metro and access networks [2].

In communication networks, routing generally performs
the identification of a path (route), per connection request,
between a source and a destination node, across the net-
work. In optical networks, the particular wavelength(s) along
the path should also be determined. The resulting problem
is often designated as routing and wavelength assignment
(RWA) problem in literature [3]. The existing RWA propos-
als can be classified into two main categories: (a) consider-
ing the effects of impairments on network performance and
(b) network design with impairment consideration. Although
this is a widespread research topic, for transparent networks
the incorporation of physical impairments in the RWA prob-
lem is still to be explored in full width. As such, a broader
perspective over this problem, which surveys both, physical
layer and management and control plane issues, is presented
in this paper. The paper is organized as follows. Section 2
discusses impairment-aware RWA (IA-RWA) schemes as
well as traffic grooming. An attempt to promote network
performance optimization via impact analysis of physical
impairments on quality of transmission (QoT) is made and a
specification proposal for dynamic monitoring and compen-
sation in terms of per-link and end-to-end control-loop char-
acteristics given. Section3 describes general requirements
for successful implementation of monitoring methods in the
physical layer, in order to establish a comprehensive com-
parison among existing M&C techniques from literature and
some new developed described herein. The operator point
of view of actual optical performance monitoring (OPM)
requirements in current core networks is presented in Sect. 4.
Section 5 concludes this paper.
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2 Network layer

The reconfigurable optical network offers the possibility to
grow services between sites without advanced engineering
or planning, and without disrupting services. The real
innovation lies in the system engineering related to the
reconfigurable functions, addressing per-channel metrics and
management, and fault isolation. The evolution of optical net-
works seems to tend towards a fully reconfigurable network,
where the control plane (CP) and management plane (MP)
have new functions, intimately correlated with M&C, such
as determining the signal quality, tuning the wavelength fre-
quency, setting dispersion compensation units and control-
ling channel powers.

2.1 Management and routing
2.1.1 Introduction

The RWA problem is an NP-complete problem with com-
putational effort increasing exponentially with the problem
size. Thus, a wide range of optimum approximation methods
and heuristics have been proposed to solve various network
optimization problems. Integer linear programming could be
employed [4], but it requires heavy computational efforts.
Other heuristic algorithms such as Tabu-search [5], simu-
lated annealing [6], and genetic algorithms [7] with to some
extent scalable computation effort have also been proposed.
The latter, for instance, have been used to solve the plain sin-
gle objective RWA problem [8], to optimize amplifier place-
ment [9], as well as to optimize multicasting sessions [5].

MostIA-RWA approaches recently proposed still consider
the QoT problem separately from the RWA problem [10, 11].
A common strategy employed is to incorporate impairments
into the cost function. However, a cost function for both linear
and nonlinear impairments is still an open question. Different
analytical models have been developed to describe reference
links with or without compensation of fiber impairments [11,
12]. Only few studies, however, consider the simultaneous
impact of chromatic dispersion (CD), polarization mode dis-
persion (PMD), amplified spontaneous emission (ASE), and
nonlinear phase shift [13]. Therefore, other more universal
metrics have been used, including the average measured Q
[14] or noise variance [12]. In any case, accurate Qpah esti-
mation is a heavy computational task, even in the static RWA
problem, demanding offline calculation.

For an TA-RWA strategy to be actually implemented, one
needs to consider also fundamental aspects like enabling
Optical Impairment Monitoring (OIM) for indirect evalua-
tion of signal quality, or enabling direct Optical Performance
Monitoring (OPM) [15]. In 2004, ITU-T defined a list of
OPM parameters that might be used for impairment-aware
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RWA [16]. We consider the most important performance
parameters to be: (a) residual chromatic dispersion (CD),
(b) total EDFA input and output powers, (c) a channel’s opti-
cal power budget, (d) optical signal-to-noise ratio (OSNR),
and (e) Q-factor as an estimator of the overall optical perfor-
mance. An effective OIM/OPM strategy shall also support
the CP in performing lightpath establishment or re-routing
functions, and can be accomplished through (a) a centralized
approach, if all paths to be established within a domain are
computed by a single and centralized network element (NE),
e.g., a network management system (NMS), or path com-
putation element (PCE) [17], or (b) a distributed approach,
if a distributed and intelligent CP, embedded in each NE, is
responsible for both route computation and lightpath estab-
lishment.

2.1.2 Multi-constraint distributed RWA applying service
dependent vector-of-constraints and lattice algebra

An RWA algorithm to consider any number and type of
parameter individually has been presented in [18]. The
presented scheme, entitled ’Distributed Wavelength-path
Provisioning’ (DWP), is proposed to maximally spread the
computing effort, to improve accuracy of locally monitored
parameters, and to avoid continuous distribution of all per
link/node possibly relevant parameters. The basic idea is to
sum-up parameters along potential paths on demand, dis-
tribute path messages selectively, and thereby exclude paths
where service related end-to-end communication constraints
are not met in the first place (Step 2). The scheme consists
of the 4 steps shown in Fig. 1.

As said before, any number and type of constraint can be
considered in parallel, like Q0T/BER & delay & reliability, as
typically found in service level agreements (SLAs). As such,
the fulfillment of constraints is guaranteed as long as the
parameters applied during path evaluation do not change. To
cope with parameter changes the selection strategy (Step 3)
should be to select the path with maximum headroom with
respect to all constraints dependent on potentially varying

Source: create path message according to request

NW-Nodes: update & forward/discard path messages

Destination: collect path messages & select fittest

NW-Nodes: set-up paths, i.e. adjust table entries

Fig. 1 CB-RWA using DWP algorithm to find feasible all-optical end-
to-end paths

parameters (e.g., OSNR, QoT). Monitoring of a path’s end-
to-end performance can finally contribute to the control of
SLA fulfillment and trigger autonomous re-routing whenever
the headroom diminishes below a constraint specific thresh-
old.

DWP’s inherent strength is its individual per constraint
operation that allows on-demand adoption to new constraints.
However, it is not applicable for packet switching due to the
effort introduced by the circulation of a great amount of path
messages to find candidate paths. Yet, some experts have
recently proposed to control the network dynamics by lim-
iting routing freedom. For instance, MPLS exactly performs
that per-flow (per ingress/egress pair). The routing underly-
ing a label-switched path (LSP) typically does not change,
and thus the effective effort introduced by finding feasible
paths to transport a certain flow type with the demanded
QoS inversely depends on the LSP life-time. Complex set-up
procedures for long living LSPs thus actually introduce less
effort if thereby frequent re-routing can be evaded.

2.1.3 Cross layer impact of physical effects and traffic
grooming in multilayer networks

In general, for statically routed networks of practical size, the
number of available wavelengths is lower by a few orders
of magnitude than the number of connections to be estab-
lished. The only solution here is to join some of the con-
nections to fit into the available wavelength-paths. This is
referred to as traffic grooming, which is possible to perform
in the electric domain. It is assumed that there is no sig-
nal regeneration, and noise and signal distortion accumulate
along lightpaths. Actually, 3R regeneration (re-amplification,
re-shaping, and re-timing) would be necessary to overcome
these impairments. Although it has been demonstrated in lab-
oratories, we consider that only electrical 3R regeneration is
economically viable in current networks. To evade the phys-
ical limitations in the optical domain, optical/electrical/opti-
cal (O/E/O) conversion needs to be (selectively) included to
ensure the quality requirements. An algorithm has been pro-
posed in [19] to investigate the effects of these O/E/O conver-
sions on the RWA process. The algorithm can be split in two
main parts: the routing part and the physical layer monitor-
ing system (PLMS). The communication between these two
parts is as follows. The routing algorithm chooses an opti-
mal route between the source and destination node and, if the
PLMS is switched on, it sends the description of the route to
PLMS. The PLMS determines the signal quality and, if it is
adequate, it sends a connection confirmation message back
to the routing part. If the signal quality is not adequate, the
PLMS determines the most distant reachable node (MRN)
along the path and sends this information back to the routing
module. This establishes the connection between the source
and the MRN and then chooses a route between the MRN
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and the destination node repeating the scheme. If MRN and
source node coincide no possible connection exists and the
connection is blocked.

In the proposed algorithm the impact of physical impair-
ments on routing the demands in a grooming capable
two-layer network is implicitly considered. The emphasis is
on the mutual impact of grooming and physical impairments,
i.e., application of the electronic time- and space-switching
layer for signal regeneration and better joint resource utili-
zation.

2.2 Network performance optimization

To achieve the per connection demanded maximum BER,
bit errors caused by temporarily insufficient QoT, caused by
the inertia of adjustments to changing traffic assignments,
need to be considered. In case of M&C at destination nodes
this can be effectively done. However, any thereby forced
adjustment must comply with all demands from other traf-
fic flows sharing a resource along the path. For instance,
adjusting the gain of all-optical amplifiers being part of links
carrying many flows based on all the individual per lightpath
(end-to-end) monitored parameters is very complex. Instead,
for such, per-link (fiber section) monitored parameters that
influence all carried flows similarly should be used.

The exact calculation of parameters for M&C to achieve
optimal performance poses a fundamental mathematical prob-
lem. This is illustrated in Fig. 2 where an abstract impairment
is considered. Demand on received QoT is —10 to —3, degra-
dation per link is —5, input QoT is 43, and the compensation
can be adjusted between —3 and +3, i.e., degradation can-
not be completely compensated but deliberately worsened
ajj = [—8.. — 2], as typical for physical impairments.

To solve the simple dimensioning problem depicted in
Fig.2, we can set up the according equation system:

P (Dest)) =3 —ajp — a3 — azs
P (Desty) =3 —as; —ajn
P (Dest3) = 3 — a3 — a45 — asy

-8..-2

Fig. 2 NP hard problem of interdependent adjustments
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We have three equations for five variables, a multi-dimen-
sional continuum of feasible solutions, and thus might assume
that an optimum solution providing fair connection qual-
ity distribution among all three connections could be found.
However, there is a cyclic dependence and parameters are
bound to certain intervals adding additional equations. Solv-
ing the equation system for feasible real numbers yields not
the best solution, i.e., degradation of —8 while in one by
one mode we get far better results [—3.. — 5]. We can state
that a solution providing equal quality per connection, if it
exists, for the example scenario does not yield an optimum.
Further, as cycles alike the discussed likely exist in every
meshed topology, we derive that, in general, solutions that
grant equal quality per connection are suboptimal if impair-
ments cannot be compensated 100% in the first place.

A global optimization approach based on complex and
time consuming calculations (e.g., integer linear program-
ming), which relies on a network-wide knowledge of every
single flow and resource parameter, appears inadequate for
dynamic environments and is unsuited for real-time control-
loops. Non-real-time operation allowing off-line calculations
would demand synchronized, and, more restrictive, consider-
ably delayed changes in traffic assignments, which is a clear
contradiction to dynamic traffic management as featured in
optical packet switched (OPS) and optical burst switched
(OBS) architectures. We should consequently drop the opti-
mum performance requirement and demand stable perfor-
mance with least effort, i.e., minimal added cost. Therefore,
parameters which can be efficiently stabilized per link shall
be managed by per link control-loops, all other per lightpath.
This clearly does not grant global optimization. Nonetheless,
stable and reliable impairment management is likely more
important than squeezing out the least quantum of optical
span potentially possible.

2.3 Specifications for dynamic monitoring
and compensation

2.3.1 Introduction

The heavy dependence of the feasibility of optical spans on
the dynamic performance of the physical components and the
quality demands of special lucrative services justify the use of
performance monitoring for dynamic lightpath management
purposes. Performance stability of several components is to
some extent dependent on the traffic load and that demands
efficient control to be deployed in dynamic environments.
Traditionally the stability is gained by controlling the envi-
ronment, e.g., adding dummy channels to keep optical power
constant when not all wavelengths are in use. Today more
dynamic approaches are demanded, since traditional ones are
designed and optimized for the entirely opaque, O/E/O-based
network architectures. In dynamically switched all-optical
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networks the stabilization of physical parameters should be
the prime target. When we look at next generation optical net-
working paradigms, e.g., OBS and OPS, we must solve the
problem of keeping the performance of physical components
constant, i.e., independent of dynamically changing traffic
assignment, to enable their future deployment.

2.3.2 Impact of physical impairments compensation on QoS
respectively SLA fulfillment

Customers demand QoS derived from SLAs, which typically
consist of statistical metrics, i.e., average and/or maximum
(maximum typically a highly probable bound, not an absolute
value), on BER, loss-rate, and latency. If BER is met, loss-rate
and latency are not related to physical impairments, i.e., loss
or repetitions of content are not caused by insufficient BER.
Thus, we need to consider BER as the only service require-
ment dependent on the control of physical impairments.

BER is directly related to QoT, although, the relation
depends on modulation format and receiver technology. We
can assume that the average values are met by design, respec-
tively, by the applied RWA scheme. The contribution of the
considered physical impairments to QoT degradation is
expressed in (1).

QoTpyp; = Qosnk — QGvp — OpGp — OFwm — -+ (1)

where QosNR = Piignal/ Pnoise reflects the eye-opening at the
receiver after consideration of amplified spontaneous emis-
sion (ASE) noise. The other are eye-closures caused by other
linear and nonlinear, potentially signal or technology depen-
dent, effects. For stabilization we need to consider the depen-
dence of the contributing components on changes of traffic
load (sensitivity), their relative impact on QoT (impact), and
how fast they possibly could be compensated (speed), alike
the assumptions shown in Table 1.

2.3.3 An attempt to specify control-loop characteristics

The specifications for impairment compensation can be stated
individually for the per-link and the per-lightpath control-
loops (Tables 2 and 3).

To which extent these specifications contribute to SLA ful-
fillment depends on the number of hops n with adjustments
originated temporarily increased BER (BERansient):

Table 1 Assumed parameters contributing to QoT

Parameter Sensitivity Impact Speed
QOSNR Low Linear Moderate
QaGvp Low Exponential [20] Slow
(0%} Moderate Exponential [21] Fast [22]
QrwM High Nonlinear N/A

195
Table 2 Exemplary specifications for per-link control loops
Parameter Stabilization Monitoring Adjustment
name target speed speed
Inserted light- +x dBm Fast (ns) Moderate (ms)
power (fiber)
Chromatic +x ps Moderate (ms) Fast (ns)
dispersion

Table 3 Exemplary specifications for per-lightpath control loops

Parameter Stabilization ~Monitoring Adjustment
name target speed speed

OSNR X dB Slow (s) Moderate (ms)
Center wavelength  £x nm Fast (ns) Slow (s)

PMD +X ps Moderate (ms) Moderate (ms)

BERansient (link;)
= pagj () E [bit error|QoT (t) < QoTtaIget]

n
BERansient < Z BER ansient (link;)
i=0

+padj (Ip) E [bit error|QoT (1) < QOTtarget] (2)

where p,j(i) is the probability for adjustments on the i -th link
in the path, paqj(Ip) the probability for per lightpath adjust-
ments, and E[bit error|QoT(t) < Q0T yyge(] is the likelihood
for bit-errors in case current QoT is below target QoT, i.e.,
current BER 1is above that for stable operation.

To get an upper bound let us assume a worst case: No
end-to-end headroom and complete detector malfunction for
QoT(lp) < QoTyygey, 1.€., E[bit error|QoT(t) < QOType(]
= 0.5. If we additionally simplify and assume the probabil-
ity for adjustments to be equal for all links and lightpaths,
Eq.2 reduces to:

n+1)

BER(ransient < Tpadj 3)

To minimize the transient impact we need to minimize pagj.
As pagj is calculated as required number of adjustments per
time-unit multiplied by time-units these adjustments cause
QoT(t) < QOTyyer, Only the latter can be addressed by
design of compensation mechanisms. The common problem
of control-loop design, reaction speed versus stabilization
time, then arises along with the acknowledgement of cas-
caded, potentially interdependent, control-loops as the com-
pensation mechanism performance specification parameters.

A simple approach to solve the problem would be to
enforce asymptotic control-loop behavior. However, if there
is some headroom for sufficient detection, slight overshot
might be acceptable and faster loop operation and reduced
number of bit-errors per adjustment would be possible. To
solve that we again need to solve a problem as that depicted
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in Fig.2 to cope with the cascades and interdependencies,
which now can be done off-line using the methods men-
tioned earlier, since control-loop performance characteristics
are independent of instantaneous traffic load. Nevertheless,
the results will depend heavily on actual traffic statistics and
network topology.

We conclude that the control-loop performance targets
for the deployment of physical impairments compensation
mechanisms in arbitrarily meshed transparent networks with
dynamic traffic assignment cannot be specified independent
of traffic characteristic (holding time distribution), traffic
matrix (likelihood of flows per node pair), and network topol-
ogy (average and maximum path length). For network archi-
tectures comprising restriction to a certain topology and
stable traffic distribution the specs need to be individually
derived.

Only if stabilization is reached within a fraction of a sin-
gle optical pulse, or if adjustments have per se no effect on
QoT, traffic assignment dynamics independent QoT could be
achieved (BERansient = 0). Assuming that out of reach, we
conclude that the demand on stabilization speed is directly
related to traffic assignment dynamics. To achieve the same
BER as for today’s non-dynamic optical connections, the
QoT needs to provide sufficient extra head-room. The slower
the stabilization, the more hops, the more dynamic traffic
changes cause adjustments, the more QoT head-room is re-
quired and that needs to be granted by constraint-based RWA.

A switched layer O (the transparent analogous physical
layer) lacking transparent 3R regeneration with every hop
can in general not grant constant QoT and thus shall not be
responsible for electrical-to-electrical BER liability, even if
that demands renunciation from common attitudes.

3 Physical layer

There is an increasing interest in transferring some monitor-
ing capabilities, which were exclusively managed by SDH/
SONET [23], to the physical layer in order to enable fully
reconfigurable and transparent optical networks, with
improved reliability and flexibility. Even in the context of
access networks, where advanced monitoring capabilities are
not implicitly considered at first, they eventually become cru-
cial to perform packet synchronization, power equalization
[24], or link fault detection and identification in Giga-capable
networks, contributing for system resilience, as well as for
increased reach and overall end user number served.

OPM started by focusing attention on simple channel
parameters, like wavelength and optical power, but rapidly
advanced to more complex and sophisticated solutions, such
as simultaneous and independent monitoring of different
physical impairments [1]. The lack of standardization and
low maturity level of monitoring methods and systems is
still significant. For these reasons, research work on this
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topic appears in literature in a large extent. As such, the
choice of more adequate M&C techniques is a complex task.
Moreover, there is no perfect method capable of meeting the
entire requirements imposed by transparent networks [23].
To cope with this, we have produced a collection of state-of-
the-art monitoring methods and developed rating criteria to
enable straightforward comparison between them. Investiga-
tion, improvement, and validation of some new impairment-
specific monitoring techniques are also presented.

3.1 Monitoring techniques evaluation

One would agree that technological evolution and commer-
cial deployment are essentially dependent on one critical lim-

Table 4 OSNR monitoring techniques

Criteria Orthogonal Nonlinear Hi-birefringent
polarization loop mirror  loop mirror [27]
heterodyne [26]
mixing [25]
Type? (0} (¢} O
Accuracy/sensi- Moderate * Moderate
tivity
Dynamic range Low High Moderate
Other Moderate Low Moderate
impairments
insensitivity®
Modulation Yes Yes Yes
format
transparency
Bit rate Yes Yes Yes
transparency
Transmitter No No No
modification
Multi-channel No No No
Multi-parameter No No Yes
Implementation Simple Suitable Simple
complexity®
Technological Good Suitable Good
requirements?
Acquisition Fast Moderate Fast
time®
Cost! Low Low Low

* There is not sufficient information in literature

2 ‘O’means optical; ‘E’ means electrical; ‘O/E’ means
optical/electrical

b Insensitiveness of the monitored physical quantity to other
impairments and robustness to environmental parameters (e.g.,
temperature)

¢ Complex when stabilization via filtering, carrier dithering, or
phase-locked loops are required, and/or the amount of electronic or
optical pre- and post-processing involved is high

4 Low power consumption, compactness, non-intrusiveness, and
scalability

¢ Considered fast if less than 1 ms

' A low cost-solution is a comprehensive concept, which includes: (i)
multi-channel ability, (ii) multi-parameter ability, (iii) simplicity of
implementation, (iv) good agreement with technological requirements,
and (v) low overall cost of the electrical/optical components which con-
stitute the device
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Table 5 GVD Monitoring techniques

Criteria RF pilot Polarization Asynchronous TPA with
tones [28] scrambling chirp [30] semiconduc-
[29] tor micro-
cavity [31]
Type? O/E O/E 0} O
Accuracy/sensi- High High High *
tivity
Dynamic range Moderate Moderate =~ Moderate High
Other Moderate Moderate ~Low Low
impairments
insensitivity®
Modulation Yes Yes Yes Yes
format
transparency
Bit rate Yes Yes Yes Yes
transparency
Transmitter Yes No No No
modification
Multi-channel ~ No No No Yes
Multi-parameter No Yes No No
Implementation Suitable  Simple Simple Suitable
complexity®
Technological ~ Good Good Good Good
requirements9
Acquisition Moderate Fast Fast Fast
time®
Cost! Moderate Low Low Low
Note: See Table 4 for footnote details
Table 6 PMD Monitoring techniques
Criteria Polarization- Degree of Partial bit
based polarization delay
interferometric [33] MZI [34]
filter [32]
Type? E 0} 0}
Accuracy/sensi- High * *
tivity
Dynamic range High Moderate High
Other Low Moderate Good
impairments
insensitivity®
Modulation Yes No Yes
format
transparency
Bit rate Yes Yes No
transparency
Transmitter No No No
modification
Multi-channel No No No
Multi-parameter No No Yes
Implementation Complex Simple Simple
complexity®
Technological Good Suitable Suitable
requirements?
Acquisition Moderate Fast Moderate
time®
Cost! Expensive Low Low

Note: See Table 4 for footnote details

iting factor: cost. However, it would not be a wise decision to
choose an OPM technology or method based on just a single
criterion. Thus, general criteria were derived from the consid-
ered three main factors: cost, robustness, and scalability. To
simplify the task the methods were divided according to the
actual impairment to be monitored. Here, only OSNR, group
velocity dispersion (GVD) and polarization mode dispersion
(PMD) monitoring methods are contemplated. Some of the
techniques which fit best the designated criteria are shown in
Tables4,5 and6.

Some of the information needed to fill the table according
to the criteria does not exist in the consulted literature. In
that case, we report our own assumptions, at the exception of
the quantitative criteria. These comparison criteria can also
be used for rating of compensation techniques with minor
modifications.

3.2 Advanced optical performance monitoring
and compensation

3.2.1 Multi-channel OPM based on free-space optics

Free space optics can be applied to conceive optical moni-
toring devices. The use of only passive optical components
in an OPM device enables fast spectrum acquisition times,
with lower cost. The optical design of our device, based on
a diffraction grating and a photo-detector array, involves a
trade-off between the image spot dimension, the array pitch
and the multiplex spectral bandwidth. Proper operation with
50 GHz spaced DWDM channels can be enabled by two
ways: either by using (a) a very high dispersion diffraction
grating and a photodiode array with more than 1000 detectors
or by using (b) a moderate resolution optical system associ-
ated with sophisticated channel reconstruction protocol [35].
The second option is more cost-effective, although it implies
partial superposition of adjacent channels.

An OPM prototype with a low PDL 900mm ™! reflection
relief grating, and a 512 pixels InGaAs array with 25um
pitch integrated in commercial linear camera was experimen-
tally evaluated. Several optical configurations were simulated
using ZEMAX™ goftware in order to find the best, which
corresponds to a couple of lenses with 30 and 250 mm focal
lengths and an incident angle on the grating of 53°. A spe-
cific control software featuring the generation of a table of
monitored parameters (power level, wavelength, ITU channel
number, OSNR), the definition of alarm generation criteria,
and the display of these alarms, was developed.

The channel profile reconstruction routine has to deal with
two main problems: (i) the choice of a suitable reference
shape for each channel, in order to provide its power and
optical carrier frequency accurately, and (ii) the influence of
closed channels. With an individual channel reconstruction
method the —3 dB transfer function width is about 25 GHz,
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which is much wider than a standard (NRZ or RZ) 10 Gbit/s
modulated spectrum. Therefore, a simple Gaussian approx-
imation of the spectral shape is valid for 10 Gbit/s. For 40
Gbit/s, this may not be valid, and different reference shapes
representative of the various modulation formats may need
to be used. The tests reported here were performed under the
Gaussian approximation.

We then developed a collective profile reconstruction
method which fits data with a sum of Gaussian functions
to increase reconstruction accuracy. The width of a sliding
window is locally adjusted, in order to optimize the trade-off
between reconstruction accuracy and computing time. We
then compared the accuracy of the individual and collective
reconstruction methods in presence of groups of 50 GHz-
spaced non-modulated channels, for which the optical power
of all odd-number channels was varied. For the individual
profile reconstruction, the accuracy decreases with increas-
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ing inter-channel power difference and for low-power chan-
nels, the maximum power deviation is more than 0.5 dB. This
does not occur for the collective profile reconstruction, where
power accuracy remains better than 0.3 dB (see Fig.3). We
also evaluated our prototype in presence of up to 40 multi-
plexed channels spaced at 100 or 50 GHz, with NRZ format
at 40 Gbit/s. Both individual and collective methods yield a
correct reconstruction, which is shown in Fig. 4, for a group
of four 50 GHz-spaced channels.

Finally, we tested the OPM prototype with forty 100-GHz
spaced 40 Gbit/s modulated channels using either CSRZ or
RZ33% modulation formats. For these formats, one channel
presents two 40 GHz separated equal peaks (CSRZ format) or
one central peak with two secondary lobs (RZ 33% format),
which are always detected and reconstructed as separated
channels by our device. It is clear that for these advanced
modulation formats, like CSRZ, a specific non-Gaussian
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Fig. 3 Power (top) and wavelength (down) accuracy versus power difference between neighboring 50 GHz-spaced channels for individual (left)

and collective (right) reconstruction methods
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Fig. 4 Individual (left) and collective (right) reconstructions of four
50-GHz spaced NRZ 40 Gbit/s channels with 7 dB power difference
between neighboring channels; for collective reconstruction, the red

reconstruction model is required. Work is in progress to test
this new feature.

3.2.2 Dynamic and remote OTDR monitoring

Metro and extended Access Networks are showing a ten-
dency towards convergence due to the urge of deploying
transparent WDM optical networks. A fully passive and trans-
parent Metro-Access network, SARDANA, has been pro-
posed and investigated [36].

It has shown to be able to provide broadband access up to
10 Gbit/s to more than 100 users covering more than 100 km
[37]. Figure 5 shows a possible scenario where several Metro-
Access networks are connected to a possible Regional
network. In this case, one or more Central Offices (CO) are
connected to the nodes of the Regional network, where M&C
modules can be distributed. We concentrate in this section in
describing a method and the developed equipment required
for monitoring transparent passive Metro-Access networks.

Since the proposed Metro-Access network is fully passive,
electronic equipment has to be concentrated at CO or at Opti-
cal Network User equipment (ONU). Remote monitoring is
preferred at the CO since it is a more flexible approach for
operators, not requiring any kind of ONU equipment upgrade
or installation costs.

On one hand, each section of the Metro-Access network
with tree topology is working at a fixed wavelength [36].
Thus, it was necessary to implement a tunable OTDR for
monitoring the different sections of the network. This was
done by using a Grating-Coupled Sampled Reflector tunable
laser (GCSR), as shown in Fig. 6 [38].

Fast tuning of the output signal from the GCSR of only
145 GHz allows generating well formed pulses, with an
extinction of >35 dB, as shown in Fig. 7.

On the other hand, the Metro-Access network can be
deployed using next generation single fiber reflective ONUs,
with the disadvantage of having to deal with Rayleigh Back-
scattering [39]. In order to minimize this impairment, a dou-
ble fiber ring is implemented. As such, the experimental
OTDR trace shown in Fig. 8 has to be interpreted. After anal-
ysis of the experimental data, adequate performance of the
diverse elements of the Remote Node (RN) can be remotely

curve represents the signal generated by the photodiode array, the green
one corresponds to the interpolation of rough data, and the white line
is the reconstructed channel profile

Transparent Metro-Access
1000 users / 100km / PON

Covered network area by
each remote monitoring module

Fig. 5 Scenario for application of remote/distributed Monitoring and
Compensation modules to extended transparent Metro-Access networks

Photodetector

C—&m

— Optical
Electrical

Tunable
filter

ot

v

Fig. 6 Implementation of the tunable OTDR using a GCSR laser and
an optical filter

checked. They are, for the downstream path: —1.5 dB (filter
loss), —3.1 dB (50/50 power splitter), +25 dB (EDFA gain),
—0.4 dB (circulator), and, for the upstream path: —0.4 dB
(circulator), +18 dB (EDFA gain), —3.1 dB (power splitter),
and —1.8 dB (filter loss), in agreement with independent
characterization of each component.

Following the described procedure, each section of the
Metro-Access network can be analyzed by tuning the remote
OTDR to each one of the A; to Ay wavelengths and the
WDM ring by selecting a non-assigned wavelength. Finally,
the Raman amplification gain can be characterized and mon-
itored, as well as the consumption of the remote pumping
provided by the CO for feeding the EDFAs at the RNs [36].
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Fig. 8 OTDR measurement and corresponding sections of the network
monitored by the proposed technique

The described remote monitoring method provides a power-
ful tool for the implementation of transparent networks.

3.2.3 Tunable CD compensation with a Sagnac loop in ring
resonators

Fiber-optic interferometers, such as the Fabry-Perot (FP) and
the ring resonator (RR), have long been considered possible
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Fig. 9 a Proposed DCM schematic for chromatic dispersion com-
pensation cascading two RR and a RR-SG configuration; PS: Phase-
shifter. b Quadratic dispersion of a 2-RR + RR-SG filter with
FSR = 25 GHz for chromatic dispersion compensation. RR-SG param-
eters: k| = 0.3,k = 0.8,g1 = g = 0925

CD compensating filters for high bit rate digital transmission
systems [40]. To achieve flat-response in a proper bandwidth,
higher order filter should be developed. Recently, a RR with
SG loop filter (RR-SG), as the one shown in third block of
Fig. 9a, has been reported as a second order tunable optical
filter with ultra-narrow-bandwidth for use in DWDM sys-
tems [41] or as part of a novel filter design technique [42]. It
can also be used for designing tunable dispersion compensa-
tion modules (DCMs) by changing the value of the coupling
factor k, and to achieve higher order designs in combination
with other FIR filters.

In Fig.9a, a specific example of a DCM based on a
compound filter made of a 2-RR + RR-SG is presented. The
quadratic dispersion of this DCM is shown in Fig. 9b. The dis-
persion compensating bandwidth of the left sidelobe of this
DCM is the double of the DCM based only on the 2-RR fil-
ter, for a value of quadratic dispersion around —3100 ps/nm,
which is in principle capable of compensating the chromatic
dispersion of around 194 km of SMF. Figure 9b also shows
that the central frequency of the DCM equals the center of
the left-sidelobe with negative dispersion and it emits 0 dBm
of average output power.

The performance of RR-SG-based filters in an optical dig-
ital transmission system operating at high bit rates was tested.
A simplified model of a fiber link has been built using the
VPI PhotonicsTM v. 7.01 software simulation engine.

Figure 10 shows the transmitter, consisting of a 10 MHz
linewidth distributed-feedback laser diode (DFB-LD), which
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Fig. 10 Simplified model of a digital transmission link with chromatic
dispersion and white noise from amplifiers

is externally modulated by a pseudo-random NRZ signal at
5 Gbit/s. The second block is a simplified transmission chan-
nel, which consists of a CD generator and a white noise
generator. The dispersion generator is just a single-mode
fiber model without attenuation, with a dispersion of
16 ps/nm+km and a slope of 0.08ps/nm? +km at the central
frequency of the simulations. Simulation results demonstrate
that, for a fixed OSNR of 13 dB and for a fiber length between
150 km and 300 km, the optical data link is not feasible with-
out dispersion management, which can be solved by using
the proposed DCM.

3.3 Signaling in optical networks

Provisioning in a network is controlled through the MP. A
similar function to provisioning using automatic configura-
tion refers to signaling, which is a feature of the CP. In a PON,
the adoption of EDFAs in the Central Office (CO), where the
Optical Line Terminals (OLTs) are placed, can be used for
signaling and monitoring purposes.

The experimental setup to evaluate the performance of
this signaling technique for PONSs is depicted in Fig. 11. An
External Cavity Laser (ECL), tuned at 1,537 nm is exter-

Fig. 11 Experimental setup for
performance evaluation of

nally modulated at 10 Gbit/s rate by a 231-1 PRBS signal.
The 980 nm diode pump (SDLO 2596) is directly modu-
lated up to 60 Mb/s by a 215-1 PRBS signal with a mod-
ulation depth of around 50%. A T-bias (100 kHz-1 GHz),
not shown in figure, provides biasing and signaling modula-
tion. The bias current, at the laser working point, is 80 mA
for an optical output power of 90 mW. In this condition
the EDFA gain is 20 dB and its output power is 14 dBm
at ECL wavelength. Both modulated signals are sent to a
2 km single mode fiber coil. This length has been dem-
onstrated to be in Italy the average distance between the
CO and the end user. The optical attenuators simulate the
power reduction which is mainly caused by the splitter in
a PON.

Figure 12b shows the BER curves, for the 10 Gbit/s sig-
nal, which have been taken in absence and in presence of
the 50 Mb/s pump modulating signal. When the signaling
at 50 Mb/s is applied, an increment of less than 0.4 dB is
valuable mainly due to a pump current increase.

Figure 12a shows a comparison between BER values of
laser pump signal modulation for three different cases (40,
50, and 60 Mb/s). Due to a non-perfect equalization system,
tuned for 60 Mb/s datarates, it can be noticed a power penalty
of around 3 dB from 40 Mb/s and 60 Mb/s cases. Error-free
conditions have been achieved.

4 Implementation viability

In this section, the impact of the implementation of transpar-
ency in the MP and CP of core optical networks, from the
operator perspective, is discussed.
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Fig. 12 a BER EDFA diode pump; b BER 10 Gbit/s modulated signal in two cases: EDFA diode pump modulation ON and OFF
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4.1 Management from the operator point of view

4.1.1 Performance management

In opaque networks, each NE management system collects
information for quality assessment, NE performance, and
traffic control, among others. Transparency implies a
decrease of the amount of information collected through
O/E/O conversion in nodes, which typically concerns QoT,
channel identification, and channel overhead bytes. Since
QoT is measured on an end-to-end basis, it is not clear if
the absence of intermediate BER alike measurement at node
sites should be complemented by additional OPM functions.
Nevertheless, a communication channel is indispensable for
proper network operation, whether it is out of channel (e.g.,
using an OSC channel [43]) or out of band. If intermediate
QoT monitoring is required, we expect it to be very closely
correlated to classical BER measurement. Since the latter
would only work for a specific bit rate, modulation format,
and vendor, Q-factor monitoring could be an alternative as
long as the equivalence with BER is guaranteed. However,
both approaches require CD or power adjustments in order
to be accurate. Hence the transparent system design should
be adapted accordingly.

4.1.2 Fault management

In transparent networks, performance may only be end-
to-end monitored which has an important impact on fault
detection (FD), fault localization (FL), and fault management
in general. Moreover, the elaboration of large transparency
domains causes vulnerability to fault propagation [44].
As such, system vendors will probably adapt transmission
systems and node equipments to avoid it. Again, it is not
clear if the use of adequate FL algorithms based on alarm
correlation [44] may be sufficient. However, convergence
time of such algorithms may dramatically increase within
transparency domain, and OPM may help to significantly
reduce it. In an opaque network, simple parameters
commonly measured are the aggregated power in amplifi-
cation sites, and the channel power at both ends and possi-
bly in equalization sites. In transparent networks the channel
power should be monitored in each node crossed, and the
other monitoring points should be the same as in opaque
networks.

4.1.3 Configuration management

Parameters commonly monitored in current point-to-point
transmission systems may not be sufficient for both commis-
sioning and provisioning in transparent systems. They are
typically: (i) total input/output power of optical amplifiers for
pump and gain control; (ii) channel power in gain equaliza-
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tion sites or ROADM; (iii) channel power at transmitter out-
put for laser current control; and (iv) transmitter wavelength
drift for wavelength locking. OSNR measurement is not a
usual feature, but is mandatory for system commissioning.

Commissioning On the physical point of view, transparent
transmission systems have additional engineering constraints
due to the aggregation of multiple channels with different
histories. This feature is already treated in ROADM systems,
and during system design and commissioning stages: all pos-
sible paths are tested and validated and no additional OPM
is required. In the transparent network scenario, the num-
ber of possible paths increases exponentially, so their full
validation may not be feasible. Instead, systems may rely
on automatic procedures with adequate feedback informa-
tion. Thus, we may suppose that as OSNR measurement is
required for traditional system commissioning, then it should
also be for installation of new systems. So, OPM with OSNR
monitoring would be required in nodes and used punctually
to validate lightpaths.

Provisioning A network configuration based on NE data-
base information is required to deliver a transparent network
capable of capacity provisioning on demand. This could be
difficult to implement, since channel information is reduced
to partial analogue information, such as wavelength and
OSNR. Configuration also requires using the data commu-
nication network. Moreover, the notion of neighbors is not
as straightforward as in opaque networks: physical impair-
ments may not allow error-free transmission on a transparent
lightpath, although the physical medium exists. Thus, OPM
could help to determine physical feasibility of paths, by using
a power monitor on each cross-connect ports or perform Q
measurement of a test. However, extensive OPM implemen-
tation may be expensive and alternative solutions are to rely
on Q estimators based on databases or to find new procedures
based on successive path testing [45].

4.2 Control plane

Main functions of the CP are neighbor discovery, routing,
signaling, and local resource management [46]. We estimate
that the first two may be impacted by transparency [47].
Neighbor discovery determines NE connectivity to their
neighbors. A link management protocol (LMP) is being stan-
dardized by IETF for this purpose. LMP has been designed
to accommodate all-optical switches. However, the proce-
dure may not work in service for the case of fully transparent
switches. The notion of neighbor may also need to include
physical feasibility verification, which is not necessary in
opaque networks. The short description of LMP in [46] shows
that the protocol needs at least power detection at node inter-
faces, which could be performed by power monitors.
Topology discovery and path computing should only
include feasible paths based on (a) the wavelength avail-
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ability related to the RWA problem, and (b) the impairment
point of view related to the CB-RWA problem. Q-factor esti-
mation based on database stocking of all necessary param-
eters needed for the computation [48] is proposed as one
way of including both approaches. Still, the physical feasi-
bility problem raises issues like the estimation reliability for
time-varying parameters which are considered static, and the
complex dynamic update of huge databases. In opaque sce-
narios, the problem is solved during the installation stage of
point-to-point systems.

4.3 Operator infrastructure constraints

In the context of dynamic lightpath establishment, the phys-
ical feasibility problem can be solved either by relying on
estimators and physical parameter databases or on physical
tests, as long as the method is reliable. To do so margins
are usually set to mask eventual accuracy problems. The
resulting trade-off between the amount of margins and the
estimation accuracy translates into a cost trade-off between
the number of rejected paths due to insufficient quality and
the implementation of multiple OPMs. In the following sec-
tion, we have evaluated this trade-off in the context of France
Telecom network, for different scenarios of OPM implemen-
tation: (i) test traffic matrices forecasted for 2010, (i1) Euro-
pean size network, (iii) with Table7, and (iv) with simple
estimator.

4.4 Analysis of OPM needs for QoT computation

We analyze the impact of OPM on the feasibility estimation
reliability, with focus on the effect of more or less precise
measurement points in an operational network, rather than
on the exact sources of uncertainties which cause estima-
tions errors. The estimator is assumed to be reliable, i.e.,
a positive estimation guarantees path feasibility. A negative
estimation does not mean the opposite, but depends on the
confidence degree of the estimator, which is out of the scope
of this paper.

Table 7 Studied network topology

Network size 68 nodes 99 links
Maximum shortest path 16 hops 5499 km

Average Minimum Maximum
Link length 321 km 16 km 700 km

3 spans 1 span 11 spans
Span length 77.1 km 16 km 109 km
Node degree 291 2 7

4.4.1 Description of the model and network

We consider an OSNR-based estimator, similar to [49]. In
this model, OSNR represents the QoT and some degradations
which are translated into penalties on the OSNR value. Pen-
alties are due to nonlinear phase shift (PhiNL) [50], PMD,
and CD. Conditions for positive estimation are OSNR >
OSNRyin + Penalties and PhiNL < PhiNL,.x [51]. The
exact values of OSNRpin, PhiNL2x, and the maximum
allowed amount of penalties depend on the studied trans-
mission equipments. We have restricted the study to classi-
cal WDM transmission at 10 Gbit/s with NRZ modulation
format, with performances representative of current ultra
long haul commercialized transmission systems. Studies are
performed on a European backbone type network with 68
nodes and 99 links. All links are equipped with multiple
fibers. Table7 summarizes the main characteristics of the
topology.

4.4.2 Simulation assumptions

OPM is pointed as a solution to solve parameter estimation
inaccuracy and network diversity. To consider the latter we
assume that: PMD, CD, and attenuation follow a distribu-
tion identical to the existing fiber infrastructure; fiber non-
linear parameters (nonlinear index n,, and effective area Aefr)
follow a bounded uniform distribution with standard devia-
tion corresponding to the one observed in the field for G.652
fibers; and amplifier gain and noise parameters are drawn
randomly using a Gaussian distribution.

We focus on power and noise uncertainties introduced by
amplifiers. Power uncertainty comes mainly from gain rip-
ples of amplifiers, Raman tilt, and PDL. Raman tilt and wave-
length dependence of fiber loss are supposed to be perfectly
corrected by amplifiers. Noise uncertainty only depends on
amplifier noise ripples. PMD, CD, n>, Aeff, and loss uncer-
tainties are neglected. Usually in order to guarantee per-
formances in spite of uncertainties, QoT estimators include
margins, whose amount depends on equipment quality. We
first suppose that no margins have been included. Latter, we
add margins to the estimator threshold in order to compensate
for uncertainties.

To evaluate the impact of power uncertainty on OSNR
and PhiNL shift estimations, we simulate an artificial situa-
tion, where lightpath performance parameters (OSNR, CD,
PMD, and PhiNL) are deduced from off-line measurements,
possibly monitored along the path, and used for QoT fea-
sibility estimation. Then we count the number of accepted
paths using this estimation. This supposes that the lightpath
to monitor exists prior to establishment (e.g., using a test
wavelength) or that measurements are collected on neigh-
boring lightpaths having the same route. Situation where no
lightpaths are available for monitoring is similar to off-line
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measurement. QoT is estimated for a selection of around
1,000 different paths between 500 km and 1,500 km (sys-
tem reach is around 1,300 km) using two distinct network
parameter databases: real represents the network parameters
state as if they could be measured exactly, whereas measured
represents a mix of measurement, monitoring, and estima-
tion of the first database with accuracy dependent on OPM
scenarios. Using the flowchart illustrated on Fig. 13, we cal-
culate the number of accepted or rejected paths with both
databases and identify the main sources of discrepancies.
Ideally both databases should lead to the same decision for
rejecting a path. Simulation results show instead that esti-
mation based on the measured database leads to wrong deci-
sion due to over-estimated (measured Q is over the threshold
and real Q is under the threshold) or under-estimated real
performances. Performance is guaranteed when no path is
over-estimated.

The description of the considered OPM scenarios fol-
lows. We assume the existence of a database of all required
parameters based on measurement and completed with inline
OPM data. The reference scenario uses only standard total
input/output power monitoring. Power measurement perfor-
med by these OPM is also collected for path QoT computa-
tion. The expected average channel power in amplification
sites is computed through the number of channels crossing
the amplifiers. For all scenarios, we consider channel power
in gain equalization sites or in ROADM, and at transmitter
output to be measured by embedded OPMs. Channel wave-
length drift is not considered.

Demand
(source-destination)

¥
Routing and
wavelength allocation

Network

measured image Impairments - Real Network
datab computation lmpalrme.nts Real image
atabase — computation database
Quality estimation - ! .
Qe Quality estimation
No
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i
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Fig. 13 Simulation set up flow chart
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Beside the reference scenario, three optional situations
are evaluated: (i) OSNR monitoring at every node input, (ii)
channel power monitoring in every amplifier, and (iii) both
simultaneously. In all four scenarios we vary measurement
accuracy, which is identical for all measurement devices.
Averaged values of 40 amplifier configurations were used.

4.4.3 Simulation results

Figure 14 shows that all OPM scenarios perform better when
OPM accuracy is below 1 dB. Accuracy on channel power
has also less impact on the percentage of badly estimated
paths, due to the fact that the error is distributed along the
paths for OSNR computation. As aresult the error is averaged
and as the distribution of power uncertainty is randomly dis-
tributed around its mean value, the error on computed OSNR
tends to zero for a sufficiently high number of measurement
points or amplification spans. Reversely, when OSNR mon-
itoring is used, only one measurement at the receiver is used
for final QoT estimation and the full inaccuracy is translated
on that estimation. Gaussian distribution of amplifier gain
ripples is however an optimistic situation. Indeed, operators
often select a single equipment type for several links, and
then, amplifiers on a given link may show similar behavior
and gain ripples. Then the error distribution along the path
may not be zero in average.

When using both OSNR and channel power monitoring,
the percentage of badly estimated paths, when OPM accuracy
is £0.1 dB is reduced by a factor of 3. Using OSNR moni-
toring with a bad accuracy may even perform worse than the
reference scenario due to the localized error. Even in the best
scenario, there is still a non-negligible percentage of paths
that are over-estimated, around 1.5%. This percentage should
reach zero in order to guarantee performance.

Figure 15 first shows that the increase of the margins
results in a higher number of under-estimated lightpaths
(from around 1% when no margin is applied to more than

Percentage of over- and under-estimated paths
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Fig. 14 Percentage of wrong decisions for over- and under-estimations
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Fig. 15 Percentage of over- and under-estimations as a function of
margin

30% with 2.5 dB margin). Figure 15 also shows that the
improvement provided by OPM is canceled when margins
are used, because bare estimation is slightly optimistic com-
pared to OPM scenarios.

A minimum of 2.5 dB margin is required to guarantee per-
formance at the expense of a huge amount of rejected paths,
which means that route should be either changed to an accept-
able path, or one regenerator should be at least used. Thus, a
2.5 dB margin represents around 350 additional regenerators
as compared to a 0 dB margin.

We conclude that a precise OPM strategy provides better
results than bare parameter estimation when power uncer-
tainties are considered. The integration of additional margins
for uncertainties allows reducing the percentage of over-esti-
mated lightpaths, but increases the overall number of rejected
paths: estimation then performs equally well as monitoring.
However, estimation relies on a database, which may not exist
due to operational reasons or to a multi-domain configura-
tion. In this case, monitoring would be the only alternative.
If other uncertainties are considered (e.g., PMD [52] or CD
uncertainty [53]), and especially if errors are not randomly
equally distributed around an average value, an increased
amount of margins will be needed, which may be reduced
thanks to the use of adequate monitoring.

5 Conclusion

The need to explore and identify more suitable M&C meth-
ods to incorporate in WDM networks in general can be solved
by taking into account the impact of physical impairments in
the network performance, ranging from physical to manage-
ment layer issues, under an integrated perspective [54].

In this paper we came to the conclusion that impairment-
free or optimum network performance would be difficult to
achieve. Instead, stable performance could be a good com-
promise when dynamic wavelength assignment and routing is
considered. To envisage the exact operation conditions prior

to the occurrence of new network events on time would imply
unfeasible allocation of computational resources and time
expenditure. A simpler, more reliable, and efficient solution
is to monitor the impact of those events and react cautiously,
rather than just using complex, sophisticated, and heavy algo-
rithms to predict everything.

The advantages of this complementary approach are also
confirmed in Sect. 4. We concluded that intensive use of dif-
ferent monitoring functions throughout the network would
probably have undesired consequences on equipment cost,
and would essentially rely on used transmission parame-
ters, like bit rate. However, to rely only on margins would
greatly reduce the interest for the implementation of trans-
parent domains. As such, a fair combination of margin, esti-
mation, and monitoring can be a better strategy.
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